Numerical method for elliptic multiscale problems
نویسندگان
چکیده
منابع مشابه
Numerical methods for multiscale elliptic problems
We present an overview of the recent development on numerical methods for elliptic problems with multiscale coefficients. We carry out a thorough study of two representative techniques: the heterogeneous multiscale method (HMM) and the multiscale finite element method (MsFEM). For problems with scale separation (but without specific assumptions on the particular form of the coefficients), analy...
متن کاملAn Efficient High Order Heterogeneous Multiscale Method for Elliptic Problems
We propose an efficient heterogeneous multiscale finite element method based on a local least-squares reconstruction of the effective matrix using the data retrieved from the solution of cell problems posed on the vertices of the triangulation. The method achieves high order accuracy for high order macroscopic solver with essentially the same cost as the linear macroscopic solver. Optimal error...
متن کاملAnalysis of the Heterogeneous Multiscale Method for Elliptic Homogenization Problems
A comprehensive analysis is presented for the heterogeneous multiscale method (HMM for short) applied to various elliptic homogenization problems. These problems can be either linear or nonlinear, with deterministic or random coefficients. In most cases considered, optimal estimates are proved for the error between the HMM solutions and the homogenized solutions. Strategies for retrieving the m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Numerical Mathematics
سال: 2008
ISSN: 1570-2820,1569-3953
DOI: 10.1515/jnum.2008.006